
Computational Quality of Service
for Scientific Components

Boyana Norris , Jaideep Ray , Rob Armstrong , Lois C. McInnes , David
E. Bernholdt , Wael R. Elwasif , Allen D. Malony , and Sameer Shende

Argonne National Laboratory, Argonne, IL 60439 USA
mcinnes,norris @mcs.anl.gov

Sandia National Laboratories, Livermore, CA 94551 USA
rob,jairay @sandia.gov

Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
bernholdtde,elwasifwr @ornl.gov
University of Oregon, Eugene, OR 97403 USA
malony,sameer @cs.uoregon.edu

Abstract. Scientific computing on massively parallel computers presents unique
challenges to component-based software engineering (CBSE). While CBSE is at
least as enabling for scientific computing as it is for other arenas, the require-
ments are different. We briefly discuss how these requirements shape the Com-
mon Component Architecture, and we describe some recent research on quality-
of-service issues to address the computational performance and accuracy of sci-
entific simulations.

1 Introduction

Massively parallel scientific computing, like its counterparts in the commercial sector,
must contend with perpetually increasing software complexity. In scientific domains,
software complexity arises from the desire to simulate intrinsically complicated natural
phenomena with increasing fidelity. Current high-performance parallel simulations of
this nature include climate modeling, nanotechnology, magnetohydrodynamics, quan-
tum chromodynamics, computational biology, astronomy, and chemistry, and more re-
cently, multiscale and multiphysics hybrids of two or more of these.

Research at Argonne National Laboratory was supported in part by the Mathematical, Infor-
mation, and Computational Sciences Division subprogram of the Office of Advanced Scien-
tific Computing Research, Office of Science, U.S. Dept. of Energy, under Contract W-31-109-
ENG-38.
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Com-
pany, for the U.S. Dept. of Energy’s National Nuclear Security Administration under Contract
DE-AC04-94AL85000.
Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Dept. of Energy
under contract DE-AC-05-00OR22725.
Research at the University of Oregon is sponsored by contracts (DEFG03-01ER25501 and DE-
FG02-03ER25561) from the MICS program of the U.S. Dept. of Energy, Office of Science.



The motivation for component-based software engineering (CBSE) in scientific
simulations is largely the same as that for other pursuits: components are a uniformway
of compartmentalizing complexity in building blocks for applications. In this paper we
present a brief overview of the requirements of CBSE for high-performance scientific
computing, and we present the Common Component Architecture (CCA) approach, on
which the computational quality-of-service (CQoS) work is based.

Component-based environments offer a degree of flexibility over traditional mono-
lithic scientific applications that opens new possibilities for improving performance,
numerical accuracy, and other characteristics. Not only can applications be assem-
bled from components selected to provide the best performance, but they can also
be changed dynamically during execution to optimize desirable characteristics. The
quality-of-service (QoS) aspects of scientific component software that we consider in
this paper differ in important ways from more common component-based sequential
and distributed applications. Although performance is a shared general concern, high
sequential and parallel efficiency and scalable performance is a more significant re-
quirement in scientific component design and deployment. The factors that affect per-
formance are closely tied to the component’s parallel implementation, its management
of memory, the algorithms executed, and other operational characteristics. In contrast,
performance quality of service in nonscientific component software focuses more on
system-related performance effects, such as CPU or network loads. The composition
of scientific components also affects their individual performance behavior, suggesting
the need for QoS metrics that measure cross-component performance.

Scientific component software is also concerned with functional qualities, such as
the level of accuracy achieved for a particular algorithm. When components can oper-
ate under various functional modes while employing the same external interface and
can switch between modes during execution, different service requirements can arise.
Moreover, the interaction of the functional qualities with the performance qualities of
scientific components makes dynamic service mechanisms distinctly important. For ex-
ample, the selection of an algorithm for a given problem must take into account a pos-
sible tradeoff between speed and reliability. When these component-specific QoS con-
cerns are considered globally in the context of the composite component application,
opportunities to enhance the computation arise.

We refer to this concept of the automatic selection and configuration of compo-
nents to suit a particular computational purpose as computational quality of service
(CQoS). CQoS is a natural extension of the capabilities of the component environment.
The name refers to the importance of the computational aspects—both functional and
nonfunctional—of scientific components in how they are developed and used. CQoS
embodies the familiar concept of quality of service in networking and the ability to
specify and manage characteristics of the application in a way that adapts to the chang-
ing (computational) environment. We discuss techniques to support CQoS capabilities
from the viewpoint of enhancing the computational service being offered.

In this paper, we first overview the background and requirements for CBSE in sci-
entific computation. Next, we briefly describe the CCA. We then discuss the concept
of computational quality of service as it applies to components for high-performance
scientific applications, and we describe an initial implementation of a CQoS environ-



ment that is being integrated with the CCA technology.We conclude with prospects for
future work.

2 CCA Overview

Apart from a social reticence to accept solutions not developed within their own sci-
entific communities, researchers are particularly concerned about the performance im-
plications of a relatively new approach such as CBSE. Timescales for message-passing
operations on modern supercomputers are measured in microseconds, and memory la-
tencies in nanoseconds. The conventional rule of thumb is that environments that incur
a performance cost in excess of 10 percent will be rejected outright by computational
scientists. In addition, scientists are concerned about the impact of applying new tech-
niques to extensive bases of existing code, often measured in hundreds of thousands
of lines developed over a decade or more by small groups of researchers; extensive
rewriting of code is expensive and rarely justifiable scientifically.

While there have been a number of experiments with commodity component mod-
els in a high-performance scientific context [1, 2], so far they have not had noticeable
acceptance in the scientific community. Unfortunately, various aspects of commercial
component models tend to limit their direct applicability in high-performance scientific
computing.Most have been designed primarily with distributed computing in mind, and
many have higher overheads than desirable, even where multiple components within the
same address space are supported. Support for parallel computing is also a crucial con-
sideration. The effort required to adapt existing code to many commercial component
models is often high, and some impose constraints with respect to languages and operat-
ing systems. For example, in high-end computational science, Java is still widely viewed
as not providing sufficient performance, making an approach like Enterprise JavaBeans
unattractive; and almost no supercomputers run Windows operating systems, limiting
the applicability of COM.

The scientific high-performance computing (HPC) community has made some ten-
tative steps toward componentlike models that are usually limited to a specific domain,
for example Cactus [3], ESMF [4], and PALM/Prism [5]. While successful in their
domains, these approaches do not support cross-disciplinary software reuse and inter-
operability.

In response, the Common Component Architecture Forum [6] was launched in 1998
as a grassroots initiative to bring the benefits of component-based software engineering
to high-performance scientific computing. The CCA effort focuses first and foremost
on developing a deeper understanding of the most effective use of CBSE in this area
and is proceeding initially by developing an independent component model tailored to
the needs of HPC.

Space constraints require that we limit our presentation of the CCA here; however,
further details are available at [6], and a comprehensive overview will be published
soon [7]. The specification of the Common Component Architecture defines the rights,
responsibilities, and relationships among the various elements of the model. Briefly,
components are units of encapsulation that can be composed to form applications; ports
are the entry points to a component and represent interfaces through which components



interact—provides ports are interfaces that a component implements, and uses ports are
interfaces that a component uses; and the framework provides some standard services,
including instantiation of components, as well as uses and provides port connections.

The CCA employs a minimalist design philosophy to simplify the task of incorpo-
rating existing HPC software into the CCA environment. This approach is critical for
acceptance in scientific computing. CCA-compliant components are required to imple-
ment just one method as part of the gov.cca.Component class: the component’s
setServices()method is called by the framework when the component is instanti-
ated, and it is the primary means by which the component registers with the framework
the ports it expects to provide and use. Uses ports and provides ports may be regis-
tered at any time, and with the BuilderService framework service it is possible
programmatically to instantiate/destroy components and make/break port connections.
This approach allows application assemblies to be dynamic, under program control,
thereby permitting the computational quality-of-service work described in Section 3.
Furthermore, this approach ensures a minimal overhead (approximately the cost of a
virtual function call) for component interactions [8].

Fig. 1.Components are directly con-
nected to peers in the same process
(vertical) and communicate among
their own cohorts between processes
using MPI (horizontal).

Most parallel scientific simulations use
a single-program/multiple-data (SPMD) paradigm,
in which an identical program runs on every
process/processor, using the Message Passing
Interface (MPI) [9] or an equivalent message-
passing mechanism over an interconnection fab-
ric. This approach sometimes is relaxed to the
multiple-program/multiple-data (MPMD) pat-
tern, which includes multiple communicating in-
stances of SPMD programs. Analogously, the
CCA’s model is that of many “same-process”
component assemblies instantiated as a paral-
lel cohort across all participating processes (see
Figure 1). In direct contrast with a distributed
object model of components (e.g., CORBA),
component connections occur within a single
process for maximum performance. Interprocess
communication, usually MPI, is left to the com-
ponents themselves without CCA interference.
Both single-component/multiple-data andmultiple-component/multipledata paradigms
are supported, analogous to SPMD and MPMD programs.

3 Computational Quality of Service

Quality of service is often associated with ways of implementing application priority
or bandwidth reservation in networking. Here computational quality of service (CQoS)
refers to the automatic selection and configuration of components to suit a particular
computational purpose. While CBSE helps to partition complexity in parallel simula-
tions, it also presents its own problems. For example, if data is distributed across all



participating processors (Fig. 1), each component must deal with the distributed data
as it is presented; it is almost never efficient to redecompose the problem optimally
for each component. If the components are thorough black boxes, then there would
be no mechanism to optimize this decomposition over all components interacting with
it. However, if metadata is provided either as part of the static information associated
with the component repository, or as dynamic information computed in real time, a
“resource-controller” component could configure its peer components by taking the
global situation into consideration (see Fig. 2). This special-purpose component inter-
prets mechanistic, performance, or dependency metadata, provided by its peer compo-
nents, to make an optimal solution within the context of an entire application or a local
container component. For more information on CCA containers, see [10].

Fig. 2. CQoS component organization.

This approach not only solves
CBSE problems but presents new op-
portunities, primarily that of being
able to dynamically replace poorly
performing components. Component
concepts help to manage complex-
ity by providing standard building
blocks; these concepts also enable a
degree of automation at a high level.
Here we will describe how CBSE in
scientific computing provides oppor-
tunities to automate scientific simula-
tions for better performance and ac-
curacy.

CQoS metadata may be used to compose or dynamically adapt an application. A
detailed design of an infrastructure for managing CQoS-based component application
execution was proposed in [11]. The CCA enables the key technology on which CQoS
depends, including component behavior metadata and component proxies for perfor-
mance modeling or dynamic substitution. By associating CQoS metadata with a com-
ponent’s uses and provides ports, one can effectively express that component’s CQoS
requirements and capabilities.

CQoS employs global information about a simulation’s composition and its envi-
ronment, so that sound choices for component implementations and parameters can be
made. Building a comprehensive CQoS infrastructure, which spans the algorithms and
parallel decomposed data common to scientific simulations, is an enormous task but,
given the need to automate the cooperation of algorithmically disparate components, a
necessary one. The research reported in the rest of this section is a first step toward this
aim and thus first addresses problems that interest the scientific simulation community.
Performance Measurement and Monitoring. The factors that affect component

performance are many and component dependent. To evaluate component CQoS, one
must have a performance system capable of measuring and reporting metrics of inter-
est. We have developed a performance monitoring capability for CCA that uses the
TAU parallel performance system [12] to collect performance data for assessing perfor-
mance metrics for a component, both to understand the performance space relative to



the metrics and to observe the metrics during execution. After performance data have
been accumulated, performance models for single components or entire applications
can be constructed. An accurate performancemodel of the entire application can enable
the automated optimization of the component assembly process.
Automated Application Assembly. CCA scientific simulation codes are assem-

blies of components created at runtime. If multiple implementations of a component
exist (i.e., they can be transparently replaced by each other), it becomes possible to
construct an “optimal” CCA code by choosing the “best” implementation of each com-
ponent, with added consideration for the overhead of any potentially necessary data
transformations. This construction requires the specification of quality attributes with
which to discriminate among component implementations. In this discussion, we will
focus on execution time as the discriminant.

Performance data can be measured and recorded transparently via the proxy-based
system described in [13]. Component interface invocations are recorded, resulting in a
call graph for the application. The net result of a fully instrumented run is the creation
of data files containing performance parameters and execution times for every invo-
cation of an instrumented component as well as a call graph with nodes representing
components, weighted by the component’s execution time.

Performance models are created through regression analysis of the data collected
by this infrastructure. The call-graph is also processed to expose the cores, or com-
ponents that are significant from the perspective of execution time. This processing is
done by traversing the call tree and pruning branches whose execution time is an order
of magnitude less than the inclusive time of the nodes where they are rooted. Since
component performance models can be constructed from performance data collected
from unrelated runs or from unit tests, the models consequently scale, at worst, as the
total number of component implementations. The final composite model for a com-
ponent assembly reduces to a summation over the performance models of each of the
components in the cores. At any point before or during the simulation, the performance
models of each of the component implementations are evaluated for the problem’s size
to obtain the execution times of any component assembly prior to choosing the optimal
set. Once an optimal set of components have been identified, the performance model-
ing and optimization component, namedMastermind, modifies the existing component
assembly through the BuilderService interface introduced in Section 2.
Adaptive Polyalgorithmic Solvers. While application assembly is typically done

once before a scientific simulation starts, often the same set of component implementa-
tions does not satisfy CQoS requirements throughout the application’s entire execution.
Many fundamental problems in scientific computing tend to have several competing so-
lutionmethods, which differ in quality attributes, such as computational cost, reliability,
and stability. For example, the solution of large-scale, nonlinear PDE-based simulations
often depends on the performance of sparse linear solvers. Many different methods and
implementations exist, and it is possible to view each method as reflecting a certain
tradeoff among several metrics of performance and reliability. Even with a limited set
of metrics, it is often neither possible nor practical to predict what the “best” algorithm
choice for a given choice may be. We are in the initial stages of investigating dynamic,
CQoS-enhanced adaptive multimethod linear solvers, which are used in the context of



solving a nonlinear PDE via a pseudo-transient Newton-Krylov method. Depending on
the problem, the linear systems solved in the course of the nonlinear solution can have
different numerical properties; thus, a single linear solution method may not be ap-
propriate for the entire simulation. As explained in detail in [14], the adaptive scheme
uses a different linear solver during each of the three phases of the pseudo-transient
Newton-Krylov algorithm, leading to increased robustness and potentially better over-
all performance.

4 Conclusion

CBSE provides a mechanism for managing software complexity and enabling hundreds
of scientists to participate in the development of large-scale simulation software, some-
thing currently lacking in scientific computing. The CCA model of component-based
development offers a standard approach to component and application construction that
is specific to parallel scientific computing but also generally applicable to many do-
mains within computational science. The CCA has already been proven successful in
several scientific domains, including climate modeling [15], combustion [16], and com-
putational chemistry [17].

The emergence of these component-based scientific codes has motivated the de-
velopment of an abstract infrastructure for describing computational quality-of-service
(CQoS) requirements and capabilities. CQoS requires an environment that contains ser-
vices for monitoring and managing performance data, analyzing static and dynamic
performance information, optimizing application assembly, and adaptively substituting
components. A CQoS environment should be developed in a manner consistent with
a CBSE methodology to maintain coherence with the engineering of scientific com-
ponent applications. The work described here demonstrates the utility of such an en-
vironment and lays the groundwork for it. As parallel computing hardware becomes
more mainstream, our hope is to see a corresponding increase in commodity simulation
components that can be easily used to build parallel scientific applications.
Acknowledgments. This work has been supported in part by the U.S. Department

of Energy’s Scientific Discovery through Advanced Computing initiative, through the
Center for Component Technology for Terascale Simulation Software. We thank Nick
Trebon (University of Oregon) for his help in implementing the performance measure-
ment infrastructure as well as the call graph pruning algorithms.We also thank Sanjukta
Bhowmick (Penn State University) for her work in implementing the adaptive polyal-
gorithmic solvers and Gail Pieper (ANL) for copyediting a draft of this paper.

References

1. Keahey, K., Beckman, P., Ahrens, J.: Ligature: Component architecture for high performance
applications. The International Journal of High Performance Computing Applications 14
(2000) 347–356

2. Pérez, C., Priol, T., Ribes, A.: A parallel CORBA component model for numerical code
coupling. International Journal of High Performance Computing Applications (IJHPCA) 17
(2003)



3. Allen, G., Benger, W., Goodale, T., Hege, H.C., Lanfermann, G., Merzky, A., Radke, T.,
Seidel, E., Shalf, J.: The Cactus code: A problem solving environment for the Grid. In: High
Performance Distributed Computing (HPDC), IEEE Computer Society (2000) 253–260

4. Anonymous: Earth System Modeling Framework (ESMF). http://sdcd.gsfc.nasa.-
gov/ESS/esmf tasc/ (2004)

5. Guilyardi, E., Budich, R.G., Valcke, S.: PRISM and ENES: European Approaches to Earth
System Modelling. In: Proceedings of Realizing TeraComputing - Tenth Workshop on the
Use of High Performance Computing in Meteorology. (2002)

6. Common Component Architecture Forum: Common Component Architecture (CCA).
http://www.cca-forum.org (2004)

7. et al., D.E.B.: A component architecture for high-performance scientific computing. Intl. J.
High Perf. Comp. Appl. (submitted to ACTS Collection special issue)

8. Bernholdt, D.E., Elwasif, W.R., Kohl, J.A., Epperly, T.G.W.: A component architecture for
high-performance computing. In: Proceedings of the Workshop on Performance Optimiza-
tion via High-Level Languages (POHLL-02), New York, NY (2002)

9. Forum, M.P.I.: MPI: a message-passing interface standard. International Journal of Super-
computer Applications and High Performance Computing 8 (1994) 159–416

10. Bernholdt, D.E., Armstrong, R.C., Allan, B.A.: Managing complexity in modern high
end scientific computing through component-based software engineering. In: Proc. of
HPCAWorkshop on Productivity and Performance in High-End Computing (P-PHEC2004),
Madrid, Spain, IEEE Computer Society (2004)

11. Hovland, P., Keahey, K., McInnes, L.C., Norris, B., Diachin, L.F., Raghavan, P.: A qual-
ity of service approach for high-performance numerical components. In: Proceedings of
Workshop on QoS in Component-Based Software Engineering, Software Technologies Con-
ference, Toulouse, France. (2003)

12. Shende, S., Malony, A.D., Rasmussen, C., Sottile, M.: A Performance Interface for
Component-Based Applications. In: Proceedings of International Workshop on Performance
Modeling, Evaluation and Optimization, International Parallel and Distributed Processing
Symposium. (2003)

13. Ray, J., Trebon, N., Shende, S., Armstrong, R.C.,Malony, A.: Performance measurement and
modeling of component applications in a high performance computing environment: A case
study. Technical Report SAND2003-8631, Sandia National Laboratories (2003) Accepted,
18th International Parallel and Distributed Computing Symposium, 2004, Santa Fe, NM.

14. McInnes, L., Norris, B., Bhowmick, S., Raghavan, P.: Adaptive sparse linear solvers for im-
plicit CFD using Newton-Krylov algorithms. In: Proceedings of the Second MIT Conference
on Computational Fluid and Solid Mechanics. (2003)

15. Larson, J., Norris, B., Ong, E., Bernholdt, D., Drake, J., Elwasif, W., Ham, M., Rasmussen,
C., Kumfert, G., Katz, D., Zhou, S., DeLuca, C., Collins, N.: Components, the common
component architecture, and the climate/weather/ocean community. submitted to AMS04
(2003)

16. Lefantzi, S., Ray, J.: A component-based scientific toolkit for reacting flows. In: Proceedings
of the Second MIT Conference on Computational Fluid and Solid Mechanics, Boston, Mass.,
Elsevier Science (2003)

17. Benson, S., Krishnan, M., McInnes, L., Nieplocha, J., Sarich, J.: Using the GA and TAO
toolkits for solving large-scale optimization problems on parallel computers. Technical
Report ANL/MCS-P1084-0903, Argonne National Laboratory (2003) submitted to ACM
Transactions on Mathematical Software.



U.S. Government License (not to be included in printed version).

The submitted manuscript has been created by the University
of Chicago as Operator of Argonne National Laboratory (”Ar-
gonne”) under Contract No. W-31-109-ENG-38 with the U.S.
Department of Energy. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up, nonexclusive, irre-
vocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform
publicly and display publicly, by or on behalf of the Govern-
ment.


